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Abstract

To demonstrate the utility of the parity filtering methods described by Vasil et al. [G. Vasil, N. Brummell, K. Julien, A
new method for fast transforms in parity-mixed PDEs: Part I. Numerical techniques and analysis, J. Comput. Phys.
(2008)], we introduce a numerical code designed to solve for Rayleigh–Bénard convection in a confined rotating box using
the new methods we have formulated. That is, using a straightforward pseudospectral framework, we incorporate tech-
niques for efficiently computing parity-mixed Coriolis accelerations in a time-dependent numerical solver. The goals of
the presented numerical code are to provide a tool to investigate aspects of confined rotating convection experiments with
a simple model, and to illustrate the application of parity filtering. In our numerical tests, we find that a correct accounting
for parity leads to clear and interesting behavior that has been observed in laboratory experiments but that has not been
observed in previous numerical simulations in periodic domains.
Published by Elsevier Inc.
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1. Introduction

Pseudospectral methods are often employed in computational fluid dynamics applications, and these meth-
ods have been particularly useful in the study of thermal convection dynamics; see [1]. Over the years, numer-
ical exploration of rotating and non-rotating turbulent thermal convection has greatly elucidated the physics
of buoyancy in thermally-driven geophysical and astrophysical fluid layers (e.g., see [2,3,5]). Laboratory exper-
iments have also been used to study thermal convection in a controlled environment (e.g., see [6–8]). However,
there has been relatively little direct available comparison between geophysically and astrophysically
0021-9991/$ - see front matter Published by Elsevier Inc.
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motivated laboratory experiments and highly supercritical (i.e. strongly driven) numerical simulations. There
are two main reasons for this gap. First, given the many degrees of freedom present in a strongly driven three-
dimensional numerical simulation of thermal convection, an extremely efficient numerical scheme is needed to
capture the dynamics accurately and in a reasonable amount of time. Second, from a historical perspective, the
efficient numerical algorithm of choice when solving for turbulent convection in the geophysical/astrophysical
context has often been some type of Fourier pseudospectral approach in a periodic domain.

When confined domains are considered, traditional pseudospectral methods can become untenable. One of
the biggest drawbacks of the pseudospectral approach in connection with laboratory experiments is the diffi-
culty in modeling the influence of realistic boundaries. This is straightforward only in a limited number of sit-
uations; even in some Cartesian domains. For a confined and rotating domain, as discussed in [9] (hereinafter
Part I), Coriolis accelerations mix trigonometric terms of differing parity (sine versus cosine), and in a confined
domain, these differing types of trigonometric bases project onto each other in a manner that can produce seri-
ous aliasing errors when spectral coefficients are computed using a discrete Fourier transform. That is, as dis-
cussed in Part I, the projection integrals,
Z p

0

sinðn1zÞ cosðn2zÞdz ¼
2n1

n2
1
�n2

2

if n1 þ n2 is odd;

0 if n1 þ n2 is even;

(
ð1Þ
of an arbitrary sine function onto an arbitrary cosine function do not vanish for general values of n1 or n2.
In Part I we devise a new method to overcome the problem of the dense projection of a sine basis onto a

cosine basis. We show that if we define the spectral expansion of unity,
IdmðzÞ ¼
4

p

Xm

n¼1

sinðð2n� 1ÞzÞ
2n� 1

; ð2Þ
then we can insert Idm, for m P dðn1 þ n2Þ=2e, into the integrand in Eq. (1) without altering the value of the
integral. Since the inclusion of Idm would flip the parity of either the sine of cosine function in Eq. (1), we can
compute an entire collection of integrals of this form via a fast Fourier transform. While Chebyshev methods
do provide an alternative for computing in confined domains, these methods are computationally expensive to
implement in more than one dimension because of both their high relative cost for obtaining solutions to ellip-
tic equations in multiple dimensions, as well as stringent time-stepping criteria. The solution derived in Part I
to the above parity issues can be incorporated easily into many existing Fourier pseudospectral codes. Our
methodology therefore allows for the efficient modeling of convection in Cartesian domains that are confined
in more that one direction. While more sophisticated methods are required for geometries other than Carte-
sian boxes or channels, the mere existence of boundaries may impact a system’s qualitative dynamics more
than the exact shape of those boundaries.

Here in Part II of this series of papers, we discuss the implementation of a numerical code designed to sim-
ulate the dynamics of rotating Rayleigh–Bénard convection in a confined stress-free rectilinear box (as in the
second example from Part I). Using the parity filtering methods developed in Part I, we present a solution to
the problem of aliasing errors that arise from Coriolis accelerations mixing terms of different parity. While we
are not able to achieve the exponential convergence enjoyed in periodic domains, we are able to provide a sim-
ple method that can achieve high-order algebraic convergence, which is generally difficult in confined
(bounded) domains [10]. Furthermore, our parity-filtering methods can be easily incorporated in existing peri-
odic pseudospectral codes for greater flexibility. Specifically, from our numerical tests, we find that a correct
accounting for parity in our numerical scheme produces qualitatively interesting dynamics that have been
observed in a number of laboratory experiments and are easily missed in numerical solutions where parity
mixing is ignored.

2. Dynamical equations and basic assumptions

As a fundamental model we employ the Boussinesq equations for a heated and rotating domain (see [11]
Chapter II, Section 8), viz.
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ðot � PrDÞu� Pr Rahk̂ ¼ �$P � ðxþ f k̂Þ � u; ð3Þ
ðot � DÞh� k̂ � u ¼ �$ � ðhuÞ; ð4Þ
$ � u ¼ 0: ð5Þ
In Eqs. (3)–(5), u ¼ ðu; v;wÞ is the vector of velocity components in the x, y and z directions, respectively,
x ¼ $� u is the relative vorticity (relative to the background vorticity, f k̂), and P is the relative kinematic
pressure. Eqs. (3)–(5) are valid in a rectilinear Cartesian box that is rotating about the vertical axis, k̂. The
equations are non-dimensionalized such that the domain has a unit depth in the z-direction. The x and y-direc-
tions have aspect ratios of Ax and Ay , respectively.

Regarding thermal forcing, a unit temperature difference is maintained across the z-direction with the bot-
tom boundary being held warmer than the top boundary. The temperature variable, h, that we employ in Eq.
(4), is the thermal perturbation away from the maintained linear background temperature profile. That is, the
total temperature is given by
T ðx; y; zÞ ¼ 1� zþ hðx; y; zÞ: ð6Þ

Using h as a thermal variable is especially convenient since the maintained top and bottom temperature
boundary conditions, T jz¼0 ¼ 1 and T jz¼1 ¼ 0, now become homogeneous boundary conditions for the pertur-
bation field, h. Temperature units are non-dimensionalized by the fixed temperature difference across the depth
of the box. Time units are non-dimensionalized according to a thermal diffusion time across the depth of the
box. Apart from the aspect ratios, Ax and Ay , the system is described by a set of three dimensionless param-
eters: the Rayleigh number, the Prandtl number, and the Coriolis parameter. These numbers, denoted
fRa; Pr; f g, are respectively given by
Ra ¼ gadTd3

mj
; Pr ¼ m

j
; f ¼ 2Xd2

j
: ð7Þ
In Eq. (7), d represents the physical depth of the domain, dT is the physical temperature difference across the
depth of the domain, j is the thermal diffusion coefficient, m is the viscosity, g is the gravitational acceleration,
and X is the angular rotation frequency. Note that a collection of equivalent dimensionless numbers are also in
common use, e.g., the Taylor number, the Ekman number, and the thermal Rossby number, respectively, viz.
Ta ¼ f 2

Pr2
; Ek ¼ Pr

f
; Ro ¼

ffiffiffiffiffiffiffiffiffiffiffi
Pr Ra
p

f
: ð8Þ
The particular form of the thermal Rossby number as we have defined it in Eq. (8) was first introduced by
Gilman [4], and is discussed in [2], and is useful since it measures the relative influences of rotation and buoy-
ancy in a manner that is independent of molecular diffusion coefficients, m and j. As it is defined, Ro gives the
ratio of the gravitational free-fall rate,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gadT=d

p
, to the basic inertial frequency, 2X.

To enforce the divergence-free condition, Eq. (5), we employ a poloidal/toroidal formulation, i.e., the veloc-
ity is decomposed such that
u ¼ $� ðWk̂Þ þ $� $� ðUk̂Þ; ð9Þ
where W is the toroidal function and U is the poloidal function. In component form, this decomposition is
given by
u ¼ oxozUþ oyW; ð10Þ
v ¼ oyozU� oxW; ð11Þ
w ¼ �ðo2

x þ o2
yÞU: ð12Þ
If we use Eqs. (10) and (11) and the definition of the curl, we find that the vertical component of the vorticity is
given by
xz ¼ �ðo2
x þ o

2
yÞW: ð13Þ
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Therefore, if we take the vertical velocity, w, and vertical vorticity, xz, as our primary dynamical variables
(along with h), then we can solve for the remaining velocity components ðu; vÞ, through the diagnostic
relations,
� ðo2
x þ o2

yÞu ¼ oxozwþ oyxz; ð14Þ
� ðo2

x þ o2
yÞv ¼ oyozw� oxxz: ð15Þ
The horizontal vorticity components follow by taking the curl of the full velocity field.
Using w and xz as dynamical variables means that we can eliminate the pressure in the Boussinesq equa-

tions by taking their curl and double curl and projecting onto the vertical direction. This produces coupled
dynamical equations for the vertical vorticity and vertical velocity. That is,
ðot � PrDÞxz ¼ �k̂ � $� ððxþ f k̂Þ � uÞ; ð16Þ
� ðot � PrDÞDwþ Pr RaD?h ¼ �k̂ � $� $� ððxþ f k̂Þ � uÞ; ð17Þ
where D? ¼ o2
x þ o2

y is the horizontal Laplacian.
The evolution equations, Eqs. (16), (17) and (4), along with the diagnostic relations, Eqs. (14) and (15),

form the closed system that we solve in our numerical scheme. However, before we begin a detailed discussion
of numerics, we must say something about boundary conditions on the collection of field variables.

For our study of convection in a confined domain, we restrict the type of velocity boundary conditions to
impenetrable and stress-free on all of the domain boundaries. We further use perfectly conducting thermal
boundary conditions on the top and bottom of the box and perfectly insulating on the sides of the box.
We summarize the velocity and thermal boundary conditions as
u ¼ oxv ¼ oxw ¼ oxh ¼ 0 for x ¼ 0;Ax; ð18Þ
oyu ¼ v ¼ oyw ¼ oyh ¼ 0 for y ¼ 0;Ay ; ð19Þ
ozu ¼ ozv ¼ w ¼ h ¼ 0 for z ¼ 0; 1: ð20Þ
Furthermore, xz ¼ oxv� oyu. By inspecting Eqs. (14) and (15) (which are equivalent to the divergence-free
condition), Eqs. (18)–(20) lead to the implied set of conditions
xz ¼ o2
xu ¼ 0 for x ¼ 0;Ax; ð21Þ

xz ¼ o2
y v ¼ 0 for y ¼ 0;Ay ; ð22Þ

ozxz ¼ o2
z w ¼ 0 for z ¼ 0; 1: ð23Þ
The fact that xz vanishes on the horizontal boundaries, follows directly from its definition and stress-free con-
ditions. The fact that ozxz vanishes on vertical boundaries follows in the same manner. The fact that some of
the second derivatives vanish on some of the boundaries results from differentiating the divergence-free con-
dition and applying it at the boundaries. For example, in the x direction,
o2
xuþ ox;yvþ ox;zw ¼ 0: ð24Þ
Stress-free conditions imply that the second two terms in Eq. (24) vanish at x ¼ 0;Ax and hence o
2
xu ¼ 0 at

x ¼ 0;Ax.
With a modest amount of effort, we could include other types of boundary conditions. The most notable

alternatives would be to implements no-slip boundaries for modeling rigid no-slip walls of confined domains
(see Part I), and/or to allow one horizontal direction to be periodic to model flow in a rotating channel. While
we expect to include these options in future work, we are currently interested in highlighting the numerical
application of parity filtering with a simple example. Furthermore, we believe that simple stress-free walls pro-
vide a great deal of interesting and, thus far, unexplored dynamical behavior.

Before we begin a discussion of our numerical scheme, we mention kinetic energy balance. To produce an
equation for kinetic energy, we contract Eq. (3) with the vector velocity, u, and integrate over the entire
domain volume to obtain
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d

dt
kuk2

2
¼ PrðRahh;wi � kxk2Þ; ð25Þ
where the angle-bracket notation is used to denote hh;wi ¼
R

hwd3x. Eq. (25) balances the time rate of change
of kinetic energy on the left hand side with buoyancy work and dissipation on the right hand side respectively.
Since the system is externally forced and dissipative there is no conserved (time-independent) energy func-
tional. However, maintaining the balance in Eq. (25) is a helpful validity check when we solve our system
numerically.

A notable feature of Eq. (25) is that there are no contributions to kinetic energy from fluid advection nor
from Coriolis accelerations. In particular, Coriolis accelerations can only act to stir and deflect the fluid, not to
speed it up or slow it down on average. That is, they can transfer energy between velocity components (and
scales in cases with parity mixing), but they can do no work. This is important to keep in mind when we ana-
lyze our numerical solutions. It turns out that if we do not properly account for parity mixing, then we may
obtain numerical solutions where Coriolis accelerations spuriously contribute to the work-energy budget.

3. Numerical scheme

In general, stress-free boundaries are particularly convenient since, for a given dynamic variable, each direc-
tion can be represented by either a single sine series or a single cosine series. Therefore, taken together, Eqs.
(18)–(23) suggest a trigonometric expansion of the following form for our dynamical variables:
w ¼
XNx

l¼0

0
XNy

m¼0

0
XNz

n¼1

W l;m;nðtÞ cosðlpx=AxÞ cosðmpy=AyÞ sinðnpzÞ; ð26Þ

xz ¼
XNx

l¼1

XNy

m¼1

XNz

n¼0

0Zl;m;nðtÞ sinðlpx=AxÞ sinðmpy=AyÞ cosðnpzÞ; ð27Þ

h ¼
XNx

l¼0

0
XNy

m¼0

0
XNz

n¼1

Hl;m;nðtÞ cosðlpx=AxÞ cosðmpy=AyÞ sinðnpzÞ: ð28Þ
For notational convenience, we employ the prime-summation notation throughout the remainder of this pa-
per, i.e., for any sequence, cl with l P 0
XN

l¼0

0cl ¼
c0

2
þ
XN

l¼1

cl: ð29Þ
Furthermore, the horizontal velocities are expanded such that
u ¼
XNx

l¼1

XNy

m¼0

0
XNz

n¼0

0Ul;m;nðtÞ sinðlpx=AxÞ cosðmpy=AyÞ cosðnpzÞ; ð30Þ

v ¼
XNx

l¼0

0
XNy

m¼1

XNz

n¼0

0V l;m;nðtÞ cosðlpx=AxÞ sinðmpy=AyÞ cosðnpzÞ; ð31Þ
where Eqs. (14) and (15) give the coefficients Ul;m;n and V l;m;n in terms of linear combinations of W l;m;n and
Zl;m;n, i.e.,
Ul;m;n ¼ �
kxkzW l;m;n � kyZl;m;n

k2
x þ k2

y

; ð32Þ

V l;m;n ¼ �
kykzW l;m;n þ kxZl;m;n

k2
x þ k2

y

; ð33Þ
and where kx ¼ lp=Ax; ky ¼ mp=Ay and, kz ¼ np.
The Coriolis terms in Eq. (3) (representing rotation about a vertical axis) mix the horizontal velocities such

that u and v are directly coupled, i.e.,



8022 G.M. Vasil et al. / Journal of Computational Physics 227 (2008) 8017–8034
otu� fv ¼ �oxP � � � ð34Þ
otvþ fu ¼ �oyP � � � : ð35Þ
Also, see Example 2 from Part I for further details. By examining the parity of each term in Eqs. (34) and (35),
we see that the Coriolis terms mix parity in the horizontal directions. This parity mixing is carried through to
the Coriolis terms in Eqs. (16) and (17). As discussed in Part I, the judicious placement of the spectral identity
function, Id, (defined in one dimension in Eq. (2)), can change the parity of the mixed Coriolis terms without
changing their projection on the ‘‘parity-flipped” basis. This then allows for the use of a fast pseudospectral
method to compute the right hand sides of our dynamical equations.

However, if we examine the vertical direction, we see that all the terms in Eqs. (34) and (35) are naturally
represented by a cosine series in the z-direction. In general, given stress-free boundaries, all of the terms in the
dynamical equations, except the Coriolis terms, preserve parity. Specifically, under the given boundary con-
ditions, all of the nonlinear terms preserve the parity of each dynamical variable. For example, consider
the x-direction advection term, ðuox þ voy þ wozÞu. In the first piece, uoxu, the x-derivative renders oxu as a tri-
ple cosine series and therefore uoxu has the same parity as uðx; y; zÞ itself. For the second term, voyu, the y-
derivative renders oyu as a sine series in the x-derivative, a sine series in the y-derivative and a cosine series
in the z-direction. After differentiation, the multiplication by vðx; y; zÞ results in voyu being a sine series in
the x-direction and a cosine series in the other two directions. This is the same parity as uðx; y; zÞ. The parity
of the third term, wozu follows from a similar argument as above.

In matrix form, the full system to solve is given by
M: _X þ A � X ¼ FðXÞ: ð36Þ

The array of dynamical variables is given by
X ¼ ðxz;w; hÞT: ð37Þ
The differential matrix operators in Eq. (36) are given by
M ¼
1 0 0

0 �D 0

0 0 1

0
B@

1
CA; A ¼

�PrD 0 0

0 PrD2 Pr RaD?
0 �1 �D

0
B@

1
CA: ð38Þ
The quadratic right hand side of Eq. (36) is given by
FðXÞ ¼ �
k̂ � $� ðxtotal � uÞ

k̂ � $� $� ðxtotal � uÞ
$ � ðhuÞ

0
B@

1
CA ð39Þ
where the total vorticity is computed via
xtotal ¼ $� uþ f Idk̂: ð40Þ

Explicitly, the identity function in the current setup is given by
Id ¼ 16

p2

XNx

l¼1

XNy

m¼1

sinðð2l� 1Þpx=AxÞ sinðð2m� 1Þpy=AyÞ
ð2l� 1Þð2m� 1Þ : ð41Þ
Given the above boundary conditions and parities, Eq. (40) is the only place in our numerical scheme where
we need to use the identity function given by Eq. (41). Furthermore, given that the vertical direction possesses
consistent parity throughout all of the dynamical equations, we only need to dealias that direction with the
standard 2/3 rule. The horizontal directions need to be dealiased with a 1/2 rule as described in Part I.

The implementation of our parity-filtering methods typically amounts to a few simple steps. Firstly, we cal-
culate Id in grid space. Given that Id is unchanging, we can compute it from Eq. (41) as a preprocessing step
by either explicitly computing the sums, or by feeding its simple Fourier spectrum into a FFT. Secondly, we
compute the offending parity-mixing terms form our dynamical equations in grid space and multiply them by



G.M. Vasil et al. / Journal of Computational Physics 227 (2008) 8017–8034 8023
Id. Thirdly, given that multiplication by Id will additionally broaden the spectrum of our dynamical variables,
we, therefore, must use a more conservative dealiasing rule than we would if parity filtering were not required.
With these three alterations, we proceed just as we would if there were no parity mixing in the problem.

For a time-stepping scheme, we use a semi-implicit Crank–Nicolson method for the time evolution, buoy-
ancy forcing, and diffusion terms and an explicit 3-level Adams–Bashforth scheme for the Coriolis and non-
linear advection terms. Thus,
Mþ dt0

2
A

� �
� X ðnþ1Þ ¼ M� dt0

2
A

� �
� X ðnÞ þ dt0ða0FðnÞ � a1Fðn�1Þ þ a2Fðn�2ÞÞ: ð42Þ
We employ a variable time step, therefore the Adams–Bashforth coefficients are given by
a0 ¼ 1þ a1 � a2;

a1 ¼
dt0 þ 2a2ðdt1 þ dt2Þ

2dt1

;

a2 ¼
dt0ð2dt0 þ 3dt1Þ
6dt2ðdt1 þ dt2Þ

;

ð43Þ
where dt0 is the current time step, dt1 is the previous time step, and dt2 is the time step prior to that. The only
exceptions to the Adams–Bashforth 3-level weights are for the first and second time step. On the first time step,
we take a very small Euler step with a1 ¼ a2 ¼ 0 and a0 ¼ 1. The second time step is Adams–Bashforth 2-level,
i.e., we take a step with a2 ¼ 0 and ða0; a1Þ following from Eq. (43). In Eq. (42), the superscripts on X represent
the following:
X ðnþ1Þ ¼ Xðt þ dt0Þ; X ðnÞ ¼ XðtÞ;
X ðn�1Þ ¼ Xðt � dt1Þ; X ðn�2Þ ¼ Xðt � dt1 � dt2Þ

ð44Þ
and the superscripts on the right hand side simply imply FðiÞ ¼ FðX ðiÞÞ.
Mixed Crank–Nicolson–Adams–Bashforth schemes are often successfully employed in many large three-

dimensional simulations; see [12]. The time-stepping is second order in the latest time step, dt0, as long as
the previous time steps, dt1 and dt2, are of the same general magnitude as dt0. That is, the various error terms
in Eq. (42) are all given by Oðdti0

0 dti1
1 dti2

2 Þ with i0 þ i1 þ i2 P 2. However, i0 by itself is not generally greater
than 2. Nevertheless, the particular scheme is chosen for its good stability and convergence properties, and
its ease of implementation; see [13] for a recent review.

Since the Crank-Nicolson part of our scheme includes buoyancy forcing, it is not unconditionally stable.
However, one can determine that if dt0 < 2ðPr RaÞ�1=2, then stability is ensured. This by itself is not extremely
restrictive, and in practice it is quite a conservative estimate. For large Rayleigh numbers, one can obtain a
much better asymptotic stability condition. Nevertheless, the specific form of the asymptotic condition is
not important since we find that our time step is mostly limited by either the explicit CFL condition or by
a diffusive accuracy condition.

With regard to calculating the various terms in Eq. (42), all of the derivatives are computed in spectral
space, and therefore the solution is updated in spectral space. After the current vector velocity and relative
vorticity are known in spectral space, we transform (inverse FFT) both of these quantities to grid space.
To insure that variables represented by both sine or cosine series can be multiplied on the same grid, we
use transforms with the collocation points given by
xi

Ax
¼ 2i� 1

2N x
;

yj

Ay
¼ 2j� 1

2Ny
; zk ¼

2k � 1

2N z
: ð45Þ
After we know the relative vorticity in grid space we compute the total vorticity from Eq. (40) and compute the
vector product, xtotal � u, in grid space. The heat flux, hu, is also computed in grid space. After these multi-
plications, both resulting vectors are brought to spectral space with a forward FFT, and the remaining deriv-
ative operations are calculated, yielding the current value of FðnÞ. The horizontal directions are dealiased
according to the methods described in Part I, and the vertical direction is dealiased according to the standard
2/3 rule. Computing the current nonlinear forcing allows the calculation of the complete right hand side of Eq.
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(42). The last step is to update the solution by inverting the Crank-Nicolson matrix on the left hand side of Eq.
(42). This is easily carried out in spectral space.

With regard to checking energy balance, we compute both sides of Eq. (25) independently and compare the
values. We can easily compute the right hand side from available data at each time step. The left hand side
requires computing the second-order-finite-difference derivative of the kinetic energy at each time step. That
is, if K ¼ kuk2

=2, then
dKðtÞ
dt
¼ c1KðtÞ � c2Kðt � dt1Þ þ c3Kðt � ðdt1 þ dt2ÞÞ þOðdt1ðdt1 þ dt2ÞÞ; ð46Þ
where
c1 ¼
1

dt1

þ 1

dt1 þ dt2

; c2 ¼
1

dt1

þ 1

dt2

; c3 ¼
1

dt2

� 1

dt1 þ dt2

ð47Þ
and where dt1 and dt2 are the past two time steps.
Our numerical code is written in Fortran 90/95 and we take advantage of the language’s object-oriented

features. We compute our Fourier transforms using the portable FFTW library [14]. While our numerical code
in not massively parallelized, we have optimized it to run efficiently on current shared-memory 2-core archi-
tectures. Using a relatively fast single processor machine, we are able to achieve moderate resolutions for our
three-dimensional computations.

4. Numerical tests

To validate our numerical code, we run a set of test cases. The ultimate goals are to highlight the numerical
consequences of using the parity filtering techniques developed in Part I and to introduce a code for future
studies of confined rotating convection. There is a slight difficulty in that there are no known exact analytical
solutions for direct comparison. However, we do have a large amount of information about what kinds of
general properties we expect physical solutions to possess. Therefore, through physical and mathematical rea-
soning and some simple related analytical results we are able to determine that our parity filtering techniques
are both valid and necessary in the current context.

In all of our rotating tests, we set the box aspect ratios equal to unity, Ax ¼ Ay ¼ 1. For all of our rotating
and non-rotating numerical tests, we set the Prandtl number, Pr ¼ 8:4. For this particular example, parity mix-
ing (and therefore parity filtering) is entirely related to Coriolis accelerations. However, as a useful check of
the non-rotational parts of our code, we can consider non-rotating examples, i.e., with f ¼ 0.

4.1. Non-rotating tests

If we do not include rotational effects, then we can compare our numerical results to standard analytical
stability/instability results. In particular, if Ax ¼ Ay ¼ 2, then we know that convection will arise spontane-
ously for Rayleigh numbers that are greater than Racritical ¼ 27p4=4 ’ 657:511 (see [11], Chapter II, Section
15). The aspect ratios are set such that the most unstable mode exactly fits inside the box. Below this critical
value for Ra, the quiescent state is globally attracting.

We run two tests with rotation switched off. For these tests we use a resolution of 32� 32� 32 (higher than
actually needed, the same results hold true for lower resolution) and Ra ¼ 650 < Racritical and
Ra ¼ 665 > Racritical. Both runs start from the same small random initial condition. Just as expected, the super-
critical case grows at a slow exponential rate until it reaches a saturated state, and the subcritical case simply
decays at a similarly slow exponential rate toward the rest state. Furthermore, after some fast transients die
away, the growth rates obtained from our numerical tests match expected theoretical growth rates quite well.
These rates are obtained by determining the slope of the lines in the linear portion of the plots from Fig. 1a.
We measure these slopes by performing a least-squares fit to a middle section of each time series after tran-
sients die away but before nonlinear saturation becomes too important.

For the Ra ¼ 650 case, theory predicts that the time for the energy to decrease by a factor of 10 is given
by t10 ’ 7:6094849. We match this value extremely well with a measured value of t10 ’ 7:6094823 (see [11],



Fig. 1. (a) Kinetic energy versus time for the non-rotating tests. The solid (growing) line corresponds to Ra ¼ 665 and, the dashed
(decaying) line corresponds to Ra ¼ 650. After some fast transients die away the solution either grows or decays exponentially until, in the
supercritical case, the energy saturates at a finite value. (b) A time series showing the normalized difference between the time rate of change
of kinetic energy and the power generation; jdKe=dt � Powerj=jPowerj. We are able to meaningfully normalize by the absolute value of the
actual computed power since the solution is either growing or decaying; not oscillating. This is not possible in general. Note that the error
is shown increased by a factor of 108. The dashed line corresponds to Ra ¼ 650 and the solid line corresponds to Ra ¼ 665. In either case
the error is smooth and never more than 5–6 parts in 108.
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Chapter II, Section 10). The difference between these two values is easily within the error of our time-stepping
scheme.

For the Ra ¼ 665 case, theory predicts that the time for the energy to increase by a factor of 10 is given by
t10 ’ 7:641. We match this value less well than for the decaying solution with a measured value of t10 ’ 7:650.
The values are still reasonably close (within about a 0.1%), given that the relatively larger difference should be
anticipated. For a supercritical Rayleigh number, the solution is growing and hence nonlinearities become
increasingly important as time progresses. This saturation mechanism acts to slow down the growth of the
supercritical solution, and hence it takes a somewhat longer time to grow by a factor of 10.

The non-rotating tests provide validation that the parts of the code that do not pertain to parity filtering are
operating correctly. We now proceed to examine the behavior of our code with rotational effects.

4.2. Rotating tests: non-parity-filtered

In this section, we demonstrate the imprudence of not properly accounting for parity mixing in the Coriolis
accelerations. We run a calculation with the parameters Ra ¼ 6000; f ¼ 350; Pr ¼ 8:4, and Ax ¼ Ay ¼ 1. These
parameters correspond to a thermal Rossby number of Ro ¼ 0:64, a viscous Ekman number of Ek ¼ 0:024,
and a Taylor number of Ta ¼ 1; 736. We use a resolution of 32� 32� 32. These parameters are also the values
we use in the following tests with parity filtering included. The parameters are convenient since they allow us
to run reasonable computations at moderate-to-low resolutions for the purposes of testing. The values also lie
in a simple, but non-trivially interesting, region of parameter space.

When we turn parity filtering off, we simply do not employ the spectral expansion of unity, Id, in the cal-
culation of the Coriolis terms on the right hand side of Eq. (40). When we do this, we obtain a solution that
does not outwardly appear implausible. However, upon closer examination the solution lacks some important
properties that we should expect.

We begin computation from a small random initial condition. The solution begins to grow exponentially
and eventually saturates at some steady state solution; see Fig. 2a. This solution seems physically plausible
but there are a number of reasons to be unsatisfied with a steady solution. Symmetry arguments, stability cal-
culations, and a number of recent experiments imply that the onset of convection in a rotating and confined
system should generally be oscillatory rather than steady; see [15,6].

Furthermore, when we consider the energy budget as defined in Eq. (25), we find that there exists spurious
power generation. Since the solution eventually goes to a steady state, the time rate of change of kinetic energy
goes to zero. However, the rate of energy generation as given by the right hand side of Eq. (25) clearly tends



Fig. 2. (a) A time series of kinetic energy for the non-parity-filtered calculation. (b) The solid line shows a time series of the time rate of
change of kinetic energy. The dashed line shows the sources of power generation as computed from the right hand side of Eq. (25). While
the two time series should coincide, they clearly do not.
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toward a finite value; see Fig. 2b. A constant rate of power generation should imply a perpetual linear increase
in the kinetic energy, and this is clearly unphysical. It is apparent that the system is leaking energy via some
additional power sink. Since we account for energy balance in the non-rotating case, this sink of energy can
only come from an incorrect treatment of the Coriolis terms. We find in the next section that parity filtering
solves this incorrect treatment.

4.3. Rotating tests: parity-filtered

In this section, we re-examine the previous numerical tests with properly parity-filtered Coriolis accelera-
tions, i.e., with Id included in the Coriolis terms in Eq. (40). As in the previous section, we run calculations
Fig. 3. (a) A time series of kinetic energy for the parity-filtered calculation. The oscillations in the energy are from higher-order harmonics
rather than the dominant precessing mode. The energy amplitude scale is shown reduced by a factor of 103. (b) A time series of power
generation as computed from the right hand side of Eq. (25). The power amplitude scale is shown reduced by a factor of 105. (c) Two time
series showing the precession of the dominant mode amplitudes. The solid line, Hx, shows the temperature at the mid-plane, z ¼ 1=2,
projected onto the function cosðpxÞ. The dashed line, Hy , shows the temperature at the mid-plane, z ¼ 1=2, projected onto the function
cosðpyÞ. After an initial transient, the two time series clearly oscillate with a well-defined dominant frequency and are a quarter period out
of phase. (d) A time series showing the normalized difference between the time rate of change of kinetic energy and the power generation;
ðdKe=dt � PowerÞ=hjPowerji, where hjPowerji ’ 8200. The error amplitude scale is shown increased by a factor of 105. After the initial
transient, the normalized error is never more than about 1 part in 105. This is consistent with the error in our time-stepping scheme.
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with the parameters Ra ¼ 6000; f ¼ 350; Pr ¼ 8:4, and Ax ¼ Ay ¼ 1. Except when we perform convergence
tests, we use a resolution of 32� 32� 32. As before, we begin a simulation from a small random initial con-
dition and allow the initial instability to saturate nonlinearly at a finite solution.

The first two notable features in the new parity-filtered results are that the kinetic energy and power settle
into an oscillatory state and that the average value of the energy is significantly larger than in the non-parity-
filtered example; see Figs. 3a and b. The significant difference between the two energy amplitudes is readily
explained by the elimination of the spurious energy sink in the previous tests. The most intriguing aspect
of the current solution is the presence of a large-scale precessing meridional cell. This precession is shown
in the temperature amplitude traces in Fig. 3c. We calculated these amplitudes by projecting the mid-plane
temperature perturbations onto cosðpx=AxÞ and cosðpy=AyÞ, respectively, i.e.,
Fig. 4.
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These amplitude traces are reminiscent of temperature traces seen in highly turbulent laboratory experiments,
in particular, those of Hart and colleagues (see [7]). Among other interesting effects, these experiments found a
prominent large-scale meridional circulation, the plane of which precessed counter to the basic rotation direc-
tion. While these experiments were carried out in a cylinder, the same behavior was also observed in a rotating
box; see [16]. In our numerical experiments, we can clearly see a prominent mode that precesses in a retrograde
direction in the mid-plane temperature perturbations seen in Fig. 4. Furthermore, these temperature pertur-
A time sequence showing the precession of temperature perturbations in the horizontal mid-plane, z ¼ 1=2. Relatively warm
s are shown with red tones and relative cool regions are shown with blue tones. The sense of rotation is in a counterclockwise
on, and the precession is in a clockwise (retrograde) sense. The relative time is given in units of rotation period, where
p=f ’ 0:036 in the thermal time units defined in Section 2.



Fig. 5. A volume rendering (see [22] for a review of methods) showing temperature perturbations, hðx; y; zÞ, for a typical time snapshot.
Relatively warm regions are shown with red tones and relative cool regions are shown with blue tones. The yellow lines trace a number of
instantaneous flow stream lines. The warm regions generally correspond to rising flow, and the cool regions generally correspond to
downward flow. The rotation axis is aligned with the z-direction and is in a right-handed orientation.
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bations are accompanied by a large-scale meridional flow that can be seen in the volume visualization in Fig.
5.

Our laminar low-resolution numerical tests do not nearly approach the level of nonlinearity present in most
laboratory experiments. Nevertheless, we believe that the large meridional circulation is a thermally-excited
inertial wave that can exist in spite of background turbulence as opposed to resulting from background tur-
bulence. Furthermore, a great deal of theoretical work and other experiments imply that precessing modes are
favorable in rotating systems; see again [15,6]. Hence, the qualitative agreement between our numerical work
and laboratory experiments provides good verification that our code is producing physical results. Alterna-
tively, in our non-parity-filtered tests discussed in Section 4.2, there is no vestige of a precessing signal. This
provides further evidence that our parity-filtering methods are essential in obtaining the proper qualitative
behavior from our given system. We will discuss the detailed physics of these precessing circulations in an
upcoming publication.

We must also check the energy consistency of the parity-filtered solutions. Recall that in Section 4.2, when
we computed the power from the right hand side of Eq. (25), we obtained a finite value at late times even
though there was no change in the value of the energy for these times. When we make the same comparison
in the current case, we achieve very good agreement. Fig. 3d shows that the difference between the power
sources and the time rate of change of kinetic energy is typically around 1 part in 105.

Finally, we perform a series of calculations for the purpose of testing convergence. For the convergence
test, we continue to use Ra ¼ 6000; f ¼ 350, and Pr ¼ 8:4. Since parity filtering in the current example is only
applied to the horizontal directions, we will mainly focus on the resolution scaling in these directions. We fea-
ture a series of calculations with a fixed vertical resolution of nz ¼ 36. This resolution is sufficient to capture
the boundary layers accurately that develop at the top and bottom of the domain. With this choice of vertical
resolution, we run a calculation for each horizontal resolution nx; ny ¼ 8; 12; 16; 24; 32; 64; 96.

4.4. Parity-filtered rotating tests: convergence results

Given that we do not have any exact analytical result to compare with each approximate solution, we
choose to show the Cauchy series of the difference between each successive resolution doubling. That is, we
choose one or more norms, k � k, and show the series, kun � u2nk converges over our range of resolutions.
If we choose a norm that is equivalent to an Lp-norm for 1 6 p 61, then we can use the completeness of
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Lp-spaces to argue for strong convergence; see [17] Section 2.7. We use two different norms that can easily be
computed from Fourier amplitudes. This is most convenient since calculations of different resolutions do not
share the same grid points (see Eq. (45)), but their Fourier amplitudes are still easily combined. The choice of
norms avoids performing some form of trigonometric interpolation for each calculation. The first norm we
choose is the L2-norm, i.e., the energy-norm. This is computed using Parseval’s identity via,
Fig. 6.
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We are also interested in the L1-norm, i.e. the sup -norm. This norm must be computed in grid space. How-
ever, we can bound the L1-norm by the l1-norm of the Fourier amplitudes. That is, if,
kûkl1 ¼
ffiffiffi
3
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l¼0

0
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1=2
; ð51Þ
then
ðu2 þ v2 þ w2Þ1=2
6 kûkl1 : ð52Þ
Also, using the Hölder Inequality, we have the ordering, kukL2 6 kukL1 6 kûkl1 .
Fig. 6 shows the Cauchy error convergence sequences for both norms given in Eqs. (50) and (51). The solu-

tions are calculated over a complete precession period, and the norms are averaged over this time span. In
both cases, the sequences are very close to linear on a log–log scale. This linearity implies a power-law form
of convergence. Also, both scaling exponents are consistent with each other and with a velocity-spectrum scal-
ing exponent of 2:81þ 1 � 3:35þ 1=2 ¼ 3:85. This is reasonably close to the value of 4 that one might obtain
from a somewhat naive analysis of Eq. (3) and its derivatives at the domain boundary. However, a subtle anal-
ysis reveals that weak corner singularities likely do imply a fractional scaling exponent that is greater than
three, but still somewhat less than four.

Finding the (approximate) asymptotic convergence rate a requires an analysis of each component of the
momentum equations and derivatives thereof evaluated at the horizontal boundaries as well as the application
of an ‘‘Integration By-Parts Coefficient Bound Theorem” (see [10], Section 2.9). That is, for each dynamic var-
iable, we must determine the highest-order derivatives that we are able to represent with a pointwise-conver-
gent Fourier series (in the horizontal directions). We already know from impenetrability that u ¼ 0 for
x ¼ 0;Ax and v ¼ 0 for y ¼ 0;Ay . Also, Eqs. (18)–(22) summarize higher-order boundary conditions arising
Log–log plots of horizontal convergence tests with two different norms. Since we do not have an exact solution to compare against,
w the Cauchy sequence, kun � u2nk, where n gives both horizontal resolutions, i.e., nx ¼ ny ¼ n. The vertical resolution is held fixed
32. The dashed lines show the computed differences, while the solid lines show the least-squares fit. The top line uses a norm that

s the L1-norm, i.e., the l1-norm of the Fourier spectral amplitudes. The bottom line uses the L2-norm, which is equivalent to the
of the Fourier spectral amplitudes. In both cases, power-law scalings of the best-fit lines are given in the upper right-hand corner.

ases, the normed difference was averaged over a complete period of the precessing solution; see Fig. 4.
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from stress-free dynamic boundary conditions. Therefore, integration-by-parts for the spectral coefficients of,
say, uðx; y; zÞ is allowed to proceed until at least fourth order in the x-direction and at third order in the y-
direction. That is, if we (temporarily) assume for simplicity that Ax ¼ Ay ¼ p, then given
U l;m ¼
4

p2
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0
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0

uðx; y; zÞ sinðlxÞ cosðmyÞdxdy; ð53Þ
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after a number of integration-by-parts and application of boundary conditions we have,
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In Eqs. (56)–(58), we stop integrating by-parts at the highest order for which we can guarantee vanishing
boundary contributions. Eqs. (56)–(58) imply that the dynamic variables conform to their respective trigono-
metric forms up to third or fourth order (depending on the direction). However, the relevant next-order deriv-
atives are given by the following set of relations,
o
3
xv ¼ �Ek�1ozw; o

3
xw ¼ Ek�1ozv; at x ¼ 0;Ax;

o3
y u ¼ Ek�1ozw; o3

y w ¼ �Ek�1ozu; at y ¼ 0;Ay ; ð59Þ

where Ek is the Ekman number as defined in Eq. (8). The fourth-order boundary conditions follow in a similar
manner. Normally, we would expect to be able to integrate by-parts one more time for each direction in each
of Eqs. (56)–(58) and thereby obtain U l;m ¼ Oðl�5m�4Þ; V l;m ¼ Oðl�4m�5Þ, and W l;m ¼ Oðl�4m�4Þ, rather than
the current asymptotic rates of Oðl�4m�3Þ;Oðl�3m�4Þ, and Oðl�3m�3Þ respectively. However, Fig. 6 seems to
imply that we cannot integrate by-parts one more full order. However, Fig. 6 also seems to indicate that we
should not be content with the current degree of convergence.

To uncover the resolution to this problem, we note that integrating by-parts one additional order in Eqs.
(56)–(58) would produce integrals of, say, fourth-order derivatives of wðx; y; zÞ, i.e., o

4
xo

4
y w. However, a close

inspection of Eq. (59) suggests that the higher-order boundary conditions can potentially produce weak corner
singularities in the higher-order derivatives. These corner singularities can render higher-order derivatives
non-integrable and therefore disallow any further by-parts integration [10]. To see how the extra fractional
rate of convergence arises, we note that while corner singularities perhaps render higher-order derivatives
non-integrable, these types of singularities are usually weak and the corresponding functions are usually
‘‘almost” differentiable by a full order. When we say ‘‘almost” differentiable, we mean that the functions
are typically at least Lipschitz of degree 0 < k < 1. That is, a given function, f ðxÞ, (where f ðxÞ can represent
any of the given dynamical functions in Eqs. (56)–(58)), is called Lipschitz of degree k if
jf ðxþ x0Þ � f ðxÞj 6 CLjx0jk, for some constant, CL. Specifically, if o

4
xo

4
y wðx; y; zÞ is a Lipschitz function of

degree 0 < k < 1, then we can extend the asymptotic order of W l;m to Oðl�ð3þkÞm�ð3þkÞÞ (see [18], Section
1.4), and we can produce a similar extension for the amplitudes, U l;m, and V l;m.

When we now consider the vector magnitude of the velocity-spectrum coefficients, we have
jûkj2 ¼ U 2
l;m þ V 2

l;m þ W 2
l;m ¼ Oðjkj�2ð3þkÞÞ; ð60Þ
where (in this case) k ¼ ðl;mÞ. Thus, the squared Cauchy error (cf. Fig. 6) is given by,
kun � u2nk2
L2 ¼

X2n

jkj¼nþ1

jûkj2 ¼ Oðn�ð2ð3þkÞ�1ÞÞ ð61Þ



Fig. 7. Log-linear plots of vertical convergence tests with two different norms. The details of this plot are similar to Fig. 6, however, in this
case, the horizontal resolution is held fixed at nx ¼ ny ¼ 32. As in Fig. 6, the dashed lines show the computed differences, while the solid
lines show the least-squares fit.
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and (after taking the square root) the Cauchy error itself is kun � u2nkL2 ¼ Oðn�ð5=2þkÞÞ. A similar argument
gives kûkl1 ¼

P2n
jkj¼nþ1jûkj ¼ Oðn�ð2þkÞÞ.

Our numerical convergence tests yield kun � u2nkL2 ¼ Oðn�3:35Þ and kûn � û2nkl1 ¼ Oðn�2:81Þ. These scalings
appear to imply a Lipschitz degree of k ’ 0:81–0:85; which is not quite unity but is reasonably close as to
imply almost one additional degree of differentiability.

For comparison to the horizontal scaling tests, we also perform a resolution scaling test on the vertical res-
olution. In this case, we fix the horizontal resolution at nx ¼ ny ¼ 32 and run a calculation for each of the ver-
tical resolutions, nz ¼ 8; 12; 16; 24; 32; 64; 96. The results of these tests are shown in Fig. 7 on a log-linear scale.
In this case, the mostly linear trend implies an exponential form of convergence. This exponential convergence
results form the form of the dynamical equations in the vertical direction. That is, if we perform integration-
by-parts on the spectral coefficients as we do in (56)–(58), we would find that the dynamical equations imply
that the boundary contributions vanish for all orders of integration. This implies exponential convergence in
the vertical direction even though we are not using a full Fourier series in that direction, i.e., we are using half-
period Fourier sine and cosine series in the z-direction.

5. Discussion

At this point, it is worthwhile to highlight how parity mixing arises in the current problem and others. In
general, boundary conditions are ultimately the cause of parity mixing. In the current problem, the diffusion
operators determine the differential order of the evolution equations and therefore necessitate dynamic bound-
ary conditions such as stress free or no slip. Hypothetically, if we were to consider the Boussinesq equations in
the inviscid limit, then we must drop two boundary conditions in each direction. The boundary conditions that
we must keep are those of impenetrability, and hence we would drop any extra stress-free or no-slip condi-
tions. Therefore, if we still wish to employ a trigonometric representation, then we can still represent the nor-
mal velocity components with sine functions in the normal directions. With this choice, the parity of the
remaining directions is automatically set by the dynamical equations, not by boundary conditions. While there
still can be parity mixing, the boundary conditions are no longer trying to enforce any incompatible parity.

This lack of competition between the boundary conditions and the dynamical equations implies that, in the
situation of a small (but nonzero) diffusion, variables of differing parity could potentially take their inviscid
forms (relative phases) in the interior of the domain with small boundary layers that allow the higher-order
derivatives to match onto their proper values at the boundaries. It is not impossible to solve for the exact form
of the boundary layers in the current system. Given that the Ekman number, Ek, is the ratio of viscous to
Coriolis forces, the most useful piece of information that comes from such an analysis is that, in the horizontal
directions, the minimum boundary layer thickness is OðEk1=3Þ which is generally wider than the OðEk1=2Þ
Ekman layer on the top and bottom boundaries; see [19]. These Ekman number scalings are fortunate since
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the vertical direction converges at an exponential rate, and the horizontal directions converge as a power-law.
Nevertheless, as we have seen in our numerical tests, seemingly small changes in how boundary conditions are
treated can have dramatic consequences for the bulk dynamics of a system, e.g., precession versus not. In gen-
eral, there really is no sound notion of a system’s independence from its boundaries.

Recall that to compute the projection of a cosine-represented function onto a sine basis and vice versa, cor-
rectly, we first need to multiply by IdN , where N is usually a large number. Even though IdN is a smooth func-
tion for any finite value of N, it still has a rapid change near the boundary. Based on the required size of N, this
field’s transition near the boundary is sharp enough that it would appear poorly resolved (i.e., it would possess
noticeable Gibbs phenomena) if it were an actual feature of the flow that had arisen via some hydrodynamic
process. Of course, IdN is a convenient numerical construction (not physical). We only care if it causes ringing
in the actual flow. Though it may seem unpleasant that IdN contains Gibbs phenomena, from the discussion in
Part I, it is a necessity for a accurate result given our choice of scheme, and the situation would be worse with-
out it (compare Figs. 2b and 3d). Ringing or not, IdN is a numerical trick that exists to cancel out aliasing
errors from an infinite tail and is exactly what is needed to ensure proper energy redistribution from Coriolis
accelerations in a pseudospectral framework.

While parity mixing (or equivalently, the numerical interaction with IdN ) scatters energy to various scales,
diffusion withdraws energy at relatively small scales. If diffusion can act at a sufficient rate, the velocity field
will remain smooth (or at least as smooth as the true physics dictate). Of course the rate of diffusion is con-
trolled by the Ekman number, Ek, i.e., the size of the (previously mentioned) boundary layers (where usually,
most dissipation takes place), is controlled by the size of the Ekman number. It, therefore, appears that resolv-
ing boundary layers at least partially dictates the success or failure of parity filtering. Of course, for hydrody-
namics in general, any numerical scheme’s practicality will in some way hinge on its ability to resolve
boundary layers properly.

At this point, some may be wondering, if boundary layers are a major issue, then why bother with parity-
mixed trigonometric functions in the first place? Why not use some technique like nonuniform finite-differ-
ences or Chebyshev polynomials? After all, in a strict sense, parity mixing is not physical, it is just an artifact
of applying trigonometric representations to functions whose boundary conditions advocate it. The basic
answer to these questions is computational speed. Recall that parity filtering is nothing more than representing
a sine function with a cosine series or vice versa. Eq. (1) can be used for this purpose, and this is nothing new.
However, what our new method provides is fast parity filtering from the utilization of the FFT for trigono-
metric functions.

Chebyshev polynomials are often good candidates when boundary layers are involved. Furthermore, in one
dimension, derivative operations with Chebyshev polynomials or finite-differences are not a serious drawback.
There are many fast schemes (i.e., OðNÞ) for computing forward one-dimensional derivatives and taking
inverses. However, if Chebyshev polynomials are simultaneously employed in more than one direction, then
derivative operations can become expensive. In one dimension, derivative operations can often utilize OðNÞ
recursion relations, but in multiple dimensions the OðNÞ recursion relations couple across multiple directions
and therefore require the inversion of dense matrices (see [20] for a discussion of and partial solution to these
issues). In many situations, it is wise to allow only one direction to be represented without trigonometric func-
tions whenever possible. Since, in the current problem, we have parity mixing in both the x and y directions, if
we used Chebyshev polynomials in one of these directions, we should probably do the same for the other
direction. This would make for an expensive approach. Moreover, in a timestepping solver, employing a
Chebyshev basis in the spatial directions results in a timestep constraint that is OðN�2Þ for each derivative
order, rather than OðN�1Þ in our current situation. That is, even though we are multiplying by a rapidly
changing function near the boundaries (i.e., Id), this does not alter the grid spacing and thus does not alter
the timestepping criteria.

As a final comment, we must mention the horizontal convergence rate in Fig. 6. Based on theoretical anal-
ysis, the scaling exponent for the L2-norm should be 5=2þ k, while the exponent for the l1-norm should be
2þ k, where k is the degree of Lipschitz continuity of the high-order derivatives. We measure values that imply
k ’ 0:85. Nevertheless, while a third or fourth-order power-law scaling is not exponential (as in the vertical
directions), it is still quite adequate for this problem. This scaling is arguably about as good as a fourth-
order-finite-difference scheme. Greater than third-order convergence implies that there are no Gibbs phenom-
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ena in any of the higher-order terms in our dynamical equations. Furthermore, Gegenbauer techniques are an
albeit expensive method for eliminating Gibbs ringing (i.e., globally obtaining an exponentially accurate rep-
resentation) solely from the Fourier coefficients; see [21]. These techniques (OðN 2Þ in each direction) could be
used in two ways. The first would be to perform post-processing on the solution amplitudes if we are interested
in presenting an accurate representation of higher than third-order derivatives. Secondly, we could filter the
solution in grid space at each time step to compute the nonlinear terms more accurately. For the current prob-
lem, this type of filtering is both unnecessary and expensive. Away from boundaries, some types of inexpensive
Fourier space filters may help convergence; see [21]. Nevertheless, Gegenbauer filtering would provide for an
exponentially-accurate calculation of the Fourier amplitudes which would decay roughly at fourth order. Fur-
ther post-processing would then provide an exponentially accurate solution in physical space. In the current
context, expensive filtering provides little advantage over Chebyshev methods which are already expensive and
highly accurate. Therefore, we believe that high-resolution, parity-filtered trigonometric calculations provide a
good balance between high accuracy and high computational speed.

6. Conclusion

We have developed a code that applies the numerical methods from Part I to the problem of rapidly rotat-
ing and high-Rayleigh-number convection in a confined box. The above tests demonstrate that we have devel-
oped an effective and practical procedure for computing subtle parity-mixed terms in evolution equations that
can have dramatic consequences for overall dynamics. Furthermore, we believe that the current methodology
allows for a wider range of use of many existing numerical pseudospectral codes. With only a relatively modest
amount of modification in Fourier transform types, and to incorporate the proper multiplications by the spec-
tral expansion of unity, a wider range of geometries can be investigated.

While we carried out tests only for limited and moderate parameter values, our current results do elucidate
some of the observed differences between past numerical experiments performed in periodic domains and what
is seen in many laboratory experiments (compare [7,2]). In an upcoming paper, we discuss detailed physics and
mathematics that explain exactly how and why precessing convection arises in confined domains. We also
employ our numerical code to survey a much larger and more supercritical region of parameter space of rotat-
ing Boussinesq convection.
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